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On the Explanation and Correlation of Turbulent 
Drag Reduction in Dilute Macromolecular Solutions 

R. .J. GORDON, University of Florida, Gainesville, Floi*icla 32601 

Synopsis 
A simple mechanistic picture of turbulent drag reduction is proposed, based on the re- 

cent work of Corino and Brodkey for Newtonian fluids. Possible explanations are then 
ronsidered from a phenomenological viewpoint, and the applicability of the well-known 
dumbbell model toward this end is discussed. It is seen that the predictions of the 
“molecular” dumbbell model are surprisingly similar to those of the “continuum” 
ronvected Maxwell model ntilized by Seyer and Metxner. Furthermore, the significance 
of the fluid relaxation time e in characterizing the drag-reducing effectiveness of a poly- 
mer solution is shown to follow from a number of qualitative argumenb. A correlation 
is proposed, closely related to the recent correlations advanced by Rodriguez, Zakin, and 
Patterson, and Astarita, Grero, and Nicodemo. Some new aspects of this correlation 
are discussed. 

INTRODUCTION 

Turbulent drag reduction in dilute polymer solutions, also known as the 
Toms effect,’ has been studied extensively in recent years. Still, it is 
clear that the basic explanation of the phenomenon, although generally 
agreed to be of a “viscoelastic” nature, is not understood. Furthermore, 
there remain unanswered a number of important questions concerning the 
existing phenomenological theories used for the correlation of turbulent 
drag reduction. 

In  the present work, a simple explanation of drag reduction is suggested, 
based on the recent studies of Corino and Brodliey2 with Newtonian 
fluids. We then turn our attention to correlation and discuss the ap- 
plicability of the “molecular” dumbbell model toward this end. A correla- 
tion is proposed and compared and contrasted with the quite similar cor- 
relations of Rodriguez, Zakin, and Patterson3 and Astarita, Greoo, and 
Sicodemo. 

A MECHANISTIC PICTURE OF DRAG REDUCTION IN DILUTE 
MACROMOLECULAR SOLUTIONS 

In  a recent significant study, Corino and Brodkey2 made observations 
of the flow field in the vicinity of the wall for a Newtonian fluid in turbulent 
motion through a circular pipe. The main conclusion of their study, in 
agreement with the related work of Kline and co-w~rkers ,~ was the sig- 
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nificance of periodic “ejections” or “bursts” originating in the wall region 
in the generation and maintenance of turbulence. For the purposes of the 
present paper, the importance of their study lies in the fact that these 
‘lbursts” also accounted for most of the turbulent energy dissipation. 

According to Corino and Brodkeylz the ejected element would leave the 
wall region, interact with the main flow, and essentially burst or break up 
into numerous very small-scale, high-frequency dissipative eddies. 

“This interaction created a great deal of turbulent motion and the movements of the 
fluid elements within it were very intense, abrupt and chaotic. The entire structure had 
a very small scale. The intensity of this interaction destroyed the identity of the in- 
dividual elements. The interaction not only occurred between the mean flow and the 
ejected element, but the continual ejection of fluid into this chaotic mass by the remainder 
of the original element and others which could occur a t  approximately the same time 
caused increased interaction and mixing.”z 

These studies suggest a simple mechanism for turbulent drag reduction. 
It is known that even very dilute (30 to  50 ppm) drag-reducing polymer 
solutions exhibit a rather strong resistance to breakup and droplet forma- 
tion and prefer instead to form thread or filament-like structures.6-8 Fol- 
lowing Lumley,s we refer to this phenomenon as “filament formation.” 
Filament formation is well illustrated in the recent photographs by Goldin, 
Yerushalmi, and Shinnar’ of the breakup of jets of Newtonian, viscoinelas- 
tic, and viscoelastic (drag-reducing) fluids. In  addition, this effect may 
easily be observed by simply dipping one’s finger into the liquid. When the 
finger is withdrawn, “a very long, coherent, tenuous thread” is seen to 
trail from the finger to the liquid.8 

A somewhat related phenomenon occurs when a jet of dyed drag-reduc- 
ing solution is injected into a quiescent mass of the same solution, as in the 
studies of Gadd.g The dispersion of the dye is severely inhibited, the dye 
preferring instead to form into filamentous streaks. 

Recalling now that Corino and Brodkey’s studiesZ indicate turbulent 
energy dissipation to  occur when the ejected element breaks up or bursts, 
causing intense and chaotic mixing on a very small scale with the external 
flow, it is suggested here that turbulent drag reduction in dilute polymer 
solutions is a result of the aversion of these systems to dispersion or breakup, 
as indicated in the works of Goldin et al.’ and Gadd,g for example. 

This explanation is, in fact, closely related to that advanced by Gadd in 
1965.9 There are important differences, however. Gadd suggested that 
drag reduction was due to a reduction in the frequency of ejections. In 
the mechanism proposed here, only the intensity of interaction and mixing 
of these ejections with the external flow is reduced, the frequency of ejec- 
tions being unaffected. 

The turbulent flow of a dilute drag-reducing polymer solution is thus 
supposed to conform quite closely to the description given by Corino and 
Brodkey,2 with the exception that the “bursting” of the ejected elements is 
less pronounced, leading to less viscous dissipation. In  support of the 
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present arguments we may note that the frequency of ejections, as deter- 
mined by Corino and Rrodkey, is given by 

w N u * 2 / v  (1) 
or, alternatively, by 

both expressions being equivalent in the range of Reynolds numbers stud- 
ied. Equation (1) or (2) has been taken by numerous authors as represent- 
ing the characteristic frequency of the dissipative edd ie~ .~ , '~ . "  Our ex- 
planation is also consistent with the reduced heat, t,ransfer found in such 
systems. 

The reduction in bursting would necessarily lead to a shift in the high 
wavenumber end of the turbulent energy spectrum toward smaller wave- 
numbers (larger eddies). One would also intuitively expect a decrease in 
the intensity of turbulence, a t  least in the region where the bursting 
occurs. These considerations are consistent with the conclusions of 
Latto and Shen,12 who studied the structure of the turbulent flow field of a 
dilute drag-reducing solution in the boundary layer on a flat plate. It is 
believed, however, that further studies are required before definite conclu- 
sions may be reached. We add finally that the present considerations are 
taken to apply only to very dilute solutions, for which the solution viscosity 
is essentially indistinguishable from that of the pure solvent. 

THE PHENOMENOLOGICAL EXPLANATION OF TURBULENT 
DRAG REDUCTION 

A continuum model of viscoelastic fluid behavior, the convected Jlax- 
well model, has been used extensively by Seyer and Metznerlolll as a basis 
for describing viscous drag reduction. Most of the systems studied by 
these workers have been of the more concentrated type, exhibiting, for 
example, a shear-dependent viscosity. On the other hand, the very dilute 
solutions under consideration here are essentially indistinguishable from 
the base solvent and exhibit a constant vis~osi ty . '~  A quite simple mo- 
lecular model, the dumbbell model, exhibits this constancy of viscosity but 
allows for "elastic" effects such as normal stresses and a dynamic vis- 
cosity. l4. l5 Some results of interest for both the convected Maxwell 
model and the dumbbell model are listed in Table I. 

Here we have chosen to express the convected Maxwell model as follows: 

s =  - - p 1 + 2 7  O D  + S' 
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TABLE I 
Cowparison of the Convected Maxwell Model and the Dumbbell Model 

Convected Maxwell 
Ft4ed~gical measurement model Dumbbell model 

1. Simple shearing flow 
~i F (GZZ,O,O) 
(a) Viscosity Function of stress Constant 
9 = &2/G 

2. Pure deformational flow 
ui = (-Gz1,G22,0) 

5 2 2  - Sll 4(It - 9 0 )  4(It - Ito) q - - = = - q i O  

vi  3 (ro(n)eimt,O,O) 
(a) Dynamic viscosity 

9* - It0 = (It' - 70) - 

(b) v" / (v '  - 70) weni d D  

G 1 - ( 2 8 M G ) '  1 - (2enG)* 
3. Small amplitude, oscillatory shearing 

(9 - I t O ) ( l  - d M )  (11 - I t O ) ( l  - id,) 
1 + w ' 8 . d  1 + W28D2 

where p now represents the viscosity increment above that of the solvent 
viscosity, qo; BM is the relaxation time and, like p,  is taken to depend on the 
invariants of the stress tensor. l6 

The relaxation time of the dumbbell model, en, is found to be16.17 

where [q lo is the intrinsic viscosity for a "theta" solvent.18 In  the case of a 
nontheta solvent, we assume eq. (4) may still be utilized, with [qlO replaced 
by 

171 = a3[~10, ( 5 )  

where (Y is the molecular expansion factor.ls~'s 

cal explanations of turbulent drag reduction that have been advanced: 
With reference to these results, let us now consider some phenomenologi- 

Increased Fluid Elasticity 
Netzner and Park,2o in an early study of drag reduction, suggested that 

the ratio of elastic and viscous stresses be taken as measure of the drag- 
reducing effectiveness of a polymer solution, i.e., the quantity of impor- 
tance was the Weissenberg number10."*20: 

(6) * s11 - S,? 
(81, - soG) 

Nws = 

* In  this work, we refer our discussions to the increased stress above that of the pure 
I n  concentrated solutions, such as those considered by Metxner solvent, i.e., S - 2qoD. 

and Park.eo the fartor 270D is negligible. 
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Referring to Table I, we note that for both models, NWS is determined by 
the relaxation time 8. 

Resistance to “Stretching” Type Motions 

A recent phenomenological explanation of turbulent drag reduction, ad- 
vanced by Seyer and Metzner,l0, l 1  concerns the unusually high resistance 
offered by polymer solutions to pure stretching motions, as evidenced by 
the prediction of an infinite value for f at a critical shear rate 8, for the two 
models in Table I. (It is known that in the case of the dumbbell model, 
the discontinuity in f is a result of the use of Gaussian statistics to describe 
the tension in the macromoleoule. 15) There are definite indications, how- 
ever, that large values of ? do a r i ~ e . ~ , ’ ~  According to Seyer and AIetzner, 
the turbulent eddy structure near the pipe wall may be considered roughly 
as such a stretching motion, with the three axis of the flow parallel to the 
pipe axis. This idea is not incompatible with the explanation of drag re- 
duction presented here if, as suggest,ed by Lumley,* the “filament forma- 
tion” tendency of drag-reducirig solutions is associated with their high re- 
sistance to stretching. Seyer and Sletaner’s considerations point again tso 
the importance of the fluid relaxation time 0. 

Enhancement of “Enera Storage” in Dynamic Motions 

Vleggaar, Dammers, and Tels2’ have suggested that viscous drag reduc- 
tion is related to the increased ability of the fluid to store energy in an oscil- 
latory shear flow. These authors take as a measure of drag reduction ef- 
fectiveness the ratio of the storage and loss moduli, i.e., 

where w is a characteristic frequency of the dissipative eddies. 
see the importance of the fluid relaxation time 0. 

Again we 

ON THE CORRELATION OF TURBULENT DRAG REDUCTION 

From a phenomenological viewpoint, either of the three explanations 
just discussed might be used to  argue the necessary dependence of the 
phenomenon on 8. We prefer the arguments of Vleggaar, Dammers, and 
Telszl and take the following ratio as a measure of the drag-reducing ef- 
fecbiveness of dilute polymer solutions: 

Here, NDE, the Deborah number,10,11.21 is the ratio of a characteristic fluid 
time and a characteristic flow time. Based on our previous arguments, we 
are tacitly assuming that i ” / ( v ’  - yo) is a measure of resistance to 
bursting. As the characteristic frequency w ,  we take the frequency of 
ejections or bursts. For the same bulk flow conditions (Q,D,v),  it, is 
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assumed that this frequency is identical in the solution and the pure sol- 
vent, and hence we have 

This is no longer equivalent to V , 2 / ~ ,  however, as the friction velocity 
U ,  is considerably diminished in the polymer solution. The nonequiva- 
lence of eqs. (1) and (2) under drag-reducing conditions has not been suf- 
ficiently emphasized. 

From eqs. (4), (511 (8)i and (9), 

or, alternatively, 

Equation (1 1) explains the observed increases in drag-reducing effective- 
ness with decreasing tube diameter, increasing solvent power (greater a) , 
and increasing molecular weight for a homologous series. It is important 
to  note that eq. (11) was derived for a flexible, linear macromolecule, for 
which the dumbbell model applies, and furthermore, i t  is limited in its 
present form to monodisperse solutions. 

Let us now consider the flow of a drag-reducing solution in a long, 
cylindrical tube. The drag ratio, DR, is defined by S a v i n ~ ' ~ - ~ ~  as the ratio 
of the pressure drop for the solution to the pressure drop for the solvent a t  
the same flow rate, in the same ttube, i.e., 

If we make the assumption that the fractional reduction in pressure drop 
for any solution-tube-flow rate depends only on the Deborah number (again 
restricting the discussion to very dilute solutions) , then 

(AP)solvent ,  4.0 - (AP)  so ln . ,  Q , D  

(AP)solvent  , Q,  D 
= r ( N D E ) .  

Rearranging, we obtain 

DR = PWDE), (13) 

where p = 1 - y. 
may be written as 

Using the definition of the friction factor f, eq. (13) 
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where f and fo are the friction factors for the solution and solvent, respec- 
tively, for the same flow rate and pipe diameter. Equations (11) and (14) 
lead to the prediction that, for any particular solution, f / f o  is a unique 
function of NRE’.~~//O*. 

In  a recent study, Rodriguez, Zakin, and Patterson3 have proposed a 
correlation between f/fo and the following quant,ity : 

I” 1.75 NDEt = Do.2 u71 = [N* v1.75 711.75 

where N D E ’  is a modified (dimensional) Deborah number, and 7 1  is the 
first-mode relaxation time of the Zimm t h e ~ r y . ~  Although the above 
correlation is not equivalent to that presented here (even a t  low concentra- 
tions), it does predict a unique functional dependence of f/fo on N R E ~ . ~ ~ /  
D2.’0 for any particular solution, in close agreement with the present pre- 
dictions. As is seen by an examination of the results of these  author^,^ 
such a unique dependence is indeed found, not only a t  the low concentra- 
tions required in the present work, but also for the more concentrated solu- 
tions studied (up to approximately 4000 ppm). 

Astarita, Greco, and Nicodemo4 have also suggested that f/fo may be a 
unique function of the Deborah number, with w = l /Br low given by eq. (9) 
and the relaxation time of the fluid left unspecified. Their studies again 
indicate the unique dependence of f/fo on N R R 1 . 7 5 / D 2  over wide ranges of 
concentration. 

In  order to  confirm quantitatively the other aspects of the correlation 
represented by eqs. (11) and (14), measurements are required on dilute 
solutions of rather low polydispersity. For the calculation of eD, one may, 
in place of eqs. (4) and (5 ) ,  use the measured values of the extinction angle 
x for the solution in a Couette viscometer, along with the following rela- 
tion :15,17 

Equation (15) applies specifically to the case of the dumbbell model. 
On the other hand, the relationship between x and the Weissenberg number, 

Nws = 2 cotan 2x, 

which follows directly from eq. (15) and Table I, may be shown to be valid 
for very general types of fluid models, over the entire range of solution con- 

* We should perhaps add the qualifying statement that measurements of x for feebly 
birefringent system would present significant experimental difficulties. In any event, 
eq. [ 151 would certainly allow accurate determination of e to much lower concentrations, 
and over much wider ranges of shear rate, than conventional measurements of this quan- 
tity in the Weissenberg rheogoniometer (10,11,23-26). 

(16) 
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~entration.’’.~~ 
reduction for more concentrated solutions. 

Equation (16) may prove useful in the correlation of drag 

CONCLUSIONS 

A mechanistic picture of turbulent drag reduction in dilute polymer 
solutions has been proposed, based on the increased resistance of these ma- 
terials to breakup and dispersion. This tendency, related to the “filament 
formation effect” noted by Lumley,8 may be associated with the high re- 
sistance to stretching motions, as discussed in the work of Seyer and 
h2etaner.10~*1 The present hypothesis, and also the assumption that the 
“ejection” frequency is unchanged in solution, could be tested by repetition 
of the Corino-Brodkey2 experiments for drag-reducing fluids. 

The importance of the fluid rel&xation time in the phenomenological ex- 
planation and correlation of turbulent drag reduction follows from a num- 
ber of qualitative arguments. The present correlation, essentially equiva- 
lent to that suggested by Astarita, Greco, and Nicodemo14 explains many 
of the observed features of drag reduction. Further tests on sufficiently 
dilute, monodisperse solutions are needed. 

Helpful comments were supplied by Professors F. A. Seyer, R. S. Brodkey, and D. W. 
Kirmw. 

Notation 

C concentration 
D tube diameter 
D = 1/2[(Vv + (Vv)T)] rate of strain tensor 

Material derivative 

drag ratio 
friction factor 
velocity gradient in simple shearing 
velocity gradient in pure deformation 
dynamic shear modulus 
molecular weight 
viscosity-average molecular weight 
Deborah number 
Reynolds number 
Weiesenberg number 
gas law oonstant 
stress tensor 
absolute temperature 
friction velocity 
velocity 
velocity gradient tensor 
molecular expansion factor 
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t o  solvent viscosity 
1 solution viscosity 

q =  “viscosity” in pure deformational flow s 2 2  - su 
G 

i io  = 477, “viscosity” of solvent in pure deformational 
flow 

9 - t o  [t] = lim ~ intrinsic viscosity 
c-0 Cllo 
17 - t o  

tsr = - 
170 

e relaxation time 
A1 

X 
first eigenvalue in Zimm theory 
extinction angle of streaming birefriiigeuce 
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